

Trawl Sampling on the R/V Acadiana

Explore trawling as a scientific research method and the diversity of demersal and pelagic species of Terrebonne Bay by working with data collected by LUMCON over decades.

Grade level	Academic Standards				
	Preformance Expectation	Sci. & Engineering Practice	Disciplinary Core Idea		
K-2					
3-5					
6-8	 MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services. 	Interdependent Relationships in Ecosystems (LS2.A) Cycle of Matter and Energy Transfer in Ecosystems (LS2.B) Ecosystem Dynamics, Functioning, and Resilience (LS2.C) Developing Possible Solutions (ETS1.B)	 DEVELOPMENT AND USING MODELS Develop a model to describe phenomena. (MS-LS2-3) ANALYSING AND INTERPRETING DATA Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1) CONSTRUCTING EXPLANTIONS AND DESIGNING SOLUTIONS Construct an explanation that includes qualitative or quantitative relationships between variables that predict phenomena. (MS-LS2-2) NGAGING IN ARGUMENT FROM EVIDENCE Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS2-4) Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-LS2-5) Connections to Nature of Science SCIENTIFIC KNOWLEDGE IS BESED ON EMPIRICAL EVIDENCE Science disciplines share common rules of obtaining and evaluating empirical evidence. (MS-LS2-4) 	PAT Patt rela CAL Cau phe ENE The thrc STA Sma chai	

Crosscutting Concept

TTERNS

terns can be used to identify cause and effect ationships. (MS-LS2-2)

USE AND EFFECT

use and effect relationships may be used to predict enomena in natural or designed systems. (MS-LS2-1)

ERGY AND MATTER

e transfer of energy can be tracked as energy flows ough a natural system. (MS-LS2-3)

ABILITY AND CHANGE

all changes in one part of a system might cause large anges in another part. (MS-LS2-4),(MS-LS2-5)

Trawl Sampling on the R/V Acadiana

Explore trawling as a scientific research method and the diversity of demersal and pelagic species of Terrebonne Bay by working with data collected by LUMCON over decades.

Grade level	Academic Standards					
	Preformance Expectation	Sci. & Engineering Practice	Disciplinary Core Idea			
	HS-LS2-2 Use mathematical		INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	USI		
	representations to support and revise		• Ecosystems have carrying capacities, which are limits to	Use		
	explanations based on evidence about		the numbers of organisms and populations they can	desi		
	factors affecting biodiversity and		support. These limits result from such factors as the			
	populations in ecosystems of different		availability of living and nonliving resources and from	CON		
	scales.		such challenges such as predation, competition, and	Scie		
			disease. Organisms would have the capacity to produce	Evid		
	HS-LS2-7 Design, evaluate, and refine a		populations of great size were it not for the fact that	• M		
	solution for reducing the impacts of		environments and resources are finite. This fundamental	prin		
9-12	human activities on the environment and		tension affects the abundance (number of individuals) of	and,		
	biodiversity.		species in any given ecosystem. (LS2.A)			
	HS-LS4-6 Create or revise a simulation to		ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE			
	test a solution to mitigate adverse		• A complex set of interactions within an ecosystem can			
	impacts of human activity on		keep its numbers and types of organisms relatively			
	biodiversity.		constant over long periods of time under stable			
			conditions. If a modest biological or physical disturbance			
	HS-ESS3-3 Create a computational		to an ecosystem occurs, it may return to its more or less			
	simulation to illustrate the relationships		original status (i.e., the ecosystem is resilient), as opposed			
	among management of natural		to becoming a very different ecosystem. Extreme			
	resources, the sustainability of human		fluctuations in conditions or the size of any population,			
	populations, and biodiversity.		however, can challenge the functioning of ecosystems in			
			terms of resources and habitat availability. (LS2.C)			

Crosscutting Concept

SING MATHEMATICS AND COMPUTATIONAL THINKING se mathematical representations of phenomena or esign solutions to support and revise explanations.

DNNECTIONS TO NATURE OF SCIENCE

- ientific Knowledge is Open to Revision in Light of New vidence
- Most scientific knowledge is quite durable, but is, in
- inciple, subject to change based on new evidence
- nd/or reinterpretation of existing evidence.