<table>
<thead>
<tr>
<th>Grade level</th>
<th>Preformance Expectation</th>
<th>Academic Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9-12 | **HS-LS2-1.** Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. | USING MATHEMATICS AND COMPUTATIONAL THINKING
* Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.*
ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE (LS2.C)
* A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. (LS2-2),(LS2-6)
* Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species. (LS2-7) |
| | **HS-LS2-2.** Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. | CAUSE AND EFFECT
* Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS2-8),(LS4-6)
SCALE, PROPORTION, AND QUANTITY
* The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. (LS2-1)
* Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale. (LS2-2) |
| | **HS-LS2-6.** Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. | STABILITY AND CHANGE
* Much of science deals with constructing explanations of how things change and how they remain stable. (LS2-6),(LS2-7) |

Periwinkle Snail Abundance
Use transect data to investigate the Periwinkle snail population in a Cocodrie salt marsh.

If you have any questions or would like more information, please contact us at education@lumcon.edu or visit our website at lumcon.edu. You can also explore our educational activities at https://lumcon.edu/educational-activities/.